翻訳と辞書 |
Preissman's theorem : ウィキペディア英語版 | Preissman's theorem In Riemannian geometry, a field of mathematics, Preissman's theorem is a statement that restricts the possible topology of a negatively curved compact Riemannian manifold ''M''. Specifically, the theorem states that every non-trivial abelian subgroup of the fundamental group of ''M'' must be isomorphic to the additive group of integers, Z.〔.〕〔.〕 For instance, a compact surface of genus two admits a Riemannian metric of curvature equal to −1 (see the uniformization theorem). The fundamental group of such a surface is isomorphic to the free group on two letters. Indeed, the only abelian subgroups of this group are isomorphic to Z. A corollary of Preissman's theorem is that the ''n''-dimensional torus, where ''n'' is at least two, admits no Riemannian metric of negative sectional curvature. ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Preissman's theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|